Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Physiol ; 15: 1354091, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38655027

RESUMO

The effects of lithium (Li) isotopes and their impact on biological processes have recently gained increased attention due to the significance of Li as a pharmacological agent and the potential that Li isotopic effects in neuroscience contexts may constitute a new example of quantum effects in biology. Previous studies have shown that the two Li isotopes, which differ in mass and nuclear spin, have unusual different effects in vivo and in vitro and, although some molecular targets for Li isotope fractionation have been proposed, it is not known whether those result in observable downstream neurophysiological effects. In this work we studied fluxes of Li+, sodium (Na+) and calcium (Ca2+) ions in the mitochondrial sodium/calcium/lithium exchanger (NCLX), the only transporter known with recognized specificity for Li+. We studied the effect of Li+ isotopes on Ca2+ efflux from heart mitochondria in comparison to natural Li+ and Na+ using Ca2+-induced fluorescence and investigated a possible Li isotope fractionation in mitochondria using inductively coupled plasma mass spectrometry (ICP-MS). Our fluorescence data indicate that Ca2+ efflux increases with higher concentrations of either Li+ or Na+. We found that the simultaneous presence of Li+ and Na+ increases Ca2+ efflux compared to Ca2+ efflux caused by the same concentration of Li+ alone. However, no differentiation in the Ca2+ efflux between the two Li+ isotopes was observed, either for Li+ alone or in mixtures of Li+ and Na+. Our ICP-MS data demonstrate that there is selectivity between Na+ and Li+ (greater Na+ than Li+ uptake) and, most interestingly, between the Li+ isotopes (greater 6Li+ than 7Li+ uptake) by the inner mitochondrial membrane. In summary, we observed no Li+ isotope differentiation for Ca2+ efflux in mitochondria via NCLX but found a Li+ isotope fractionation during Li+ uptake by mitochondria with NCLX active or blocked. Our results suggest that the transport of Li+ via NCLX is not the main pathway for Li+ isotope fractionation and that this differentiation does not affect Ca2+ efflux in mitochondria. Therefore, explaining the puzzling effects of Li+ isotopes observed in other contexts will require further investigation to identify the molecular targets for Li+ isotope differentiation.

2.
Nanomaterials (Basel) ; 14(7)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38607107

RESUMO

Drug delivery vehicles composed of lipids and gemini surfactants (GS) are promising in gene therapy. Tuning the composition and properties of the delivery vehicle is important for the efficient load and delivery of DNA fragments (genes). In this paper, we studied novel gene delivery systems composed of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), 1,2-dipalmitoyl-sn-3-phosphocholine (DPPC), and GS of the type N,N-bis(dimethylalkyl)-α,ω-alkanediammonium dibromide at different ratios. The nanoscale properties of the mixed DOPC-DPPC-GS monolayers on the surface of the gene delivery system were studied using atomic force microscopy (AFM) and Kelvin probe force microscopy (KPFM). We demonstrate that lipid-GS mixed monolayers result in the formation of nanoscale domains that vary in size, height, and electrical surface potential. We show that the presence of GS can impart significant changes to the domain topography and electrical surface potential compared to monolayers composed of lipids alone.

3.
Nanotechnology ; 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38636478

RESUMO

Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by the accumulation of amyloid plaques in the brain. The toxicity of amyloid to neuronal cell surfaces arises from interactions between small intermediate aggregates, namely amyloid oligomers, and the cell membrane. The nature of these interactions changes with age and disease progression. In our previous work, we demonstrated that both membrane composition and nanoscale structure play crucial roles in amyloid-membrane interactions. In our previous work, we demonstrated that both membrane composition and nanoscale structure play crucial roles in amyloid toxicity, and that membrane models mimicking healthy neuron were less affected by amyloid than model membranes mimicking AD neuronal membranes. This understanding introduces the possibility of modifying membrane properties with membrane-active molecules, such as melatonin, to protect them from amyloid-induced damage. In the present study, we employed atomic force microscopy (AFM) and localized surface plasmon resonance (LSPR) to investigate the protective effects of melatonin. We utilized synthetic lipid membranes that mimic the neuronal cellular membrane at various stages of AD and explored their interactions with amyloid-ß (1-42) in the presence of melatonin. Our findings reveal that the early diseased membrane model is particularly vulnerable to amyloid binding and subsequent damage. However, melatonin exerts its most potent protective effect on this early-stage membrane. These results suggest that melatonin could act at the membrane level to alleviate amyloid toxicity, offering the most protection during the initial stages of AD.

4.
J Alzheimers Dis ; 96(4): 1663-1683, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38073391

RESUMO

BACKGROUND: There is a lack of understanding in the molecular and cellular mechanisms of Alzheimer's disease that has hindered progress on therapeutic development. The focus has been on targeting toxic amyloid-ß (Aß) pathology, but these therapeutics have generally failed in clinical trials. Aß is an aggregation-prone protein that has been shown to disrupt cell membrane structure in molecular biophysics studies and interfere with membrane receptor signaling in cell and animal studies. Whether the lipid membrane or specific receptors are the primary target of attack has not been determined. OBJECTIVE: This work elucidates some of the interplay between membrane cholesterol and Aß42 on HT22 neuronal cell viability, morphology, and platelet-derived growth factor (PDGF) signaling pathways. METHODS: The effects of cholesterol depletion by methyl-ß-cyclodextrin followed by treatment with Aß and/or PDGF-AA were assessed by MTT cell viability assays, western blot, optical and AFM microscopy. RESULTS: Cell viability studies show that cholesterol depletion was mildly protective against Aß toxicity. Together cholesterol reduction and Aß42 treatment compounded the disruption of the PDGFα receptor activation. Phase contrast optical microscopy and live cell atomic force microscopy imaging revealed that cytotoxic levels of Aß42 caused morphological changes including cell membrane damage, cytoskeletal disruption, and impaired cell adhesion; cell damage was ameliorated by cellular cholesterol depletion. CONCLUSIONS: Cholesterol depletion impacted the effects of Aß42 on HT22 cell viability, morphology, and receptor tyrosine kinase signaling.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Animais , Sobrevivência Celular , Peptídeos beta-Amiloides/metabolismo , Doença de Alzheimer/metabolismo , Colesterol/metabolismo , Proteínas Tirosina Quinases , Fragmentos de Peptídeos/metabolismo
5.
Front Physiol ; 14: 1200119, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37781224

RESUMO

Lithium is commonly prescribed as a mood stabilizer in a variety of mental health conditions, yet its molecular mode of action is incompletely understood. Many cellular events associated with lithium appear tied to mitochondrial function. Further, recent evidence suggests that lithium bioactivities are isotope specific. Here we focus on lithium effects related to mitochondrial calcium handling. Lithium protected against calcium-induced permeability transition and decreased the calcium capacity of liver mitochondria at a clinically relevant concentration. In contrast, brain mitochondrial calcium capacity was increased by lithium. Surprisingly, 7Li acted more potently than 6Li on calcium capacity, yet 6Li was more effective at delaying permeability transition. The size distribution of amorphous calcium phosphate colloids formed in vitro was differentially affected by lithium isotopes, providing a mechanistic basis for the observed isotope specific effects on mitochondrial calcium handling. This work highlights a need to better understand how mitochondrial calcium stores are structurally regulated and provides key considerations for future formulations of lithium-based therapeutics.

6.
Biochem Biophys Rep ; 34: 101461, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37063814

RESUMO

Lithium has been used as a treatment for bipolar disorder for over half a century, but there has thus far been no clinical differentiation made between the two naturally occurring stable isotopes (6Li and 7Li). While the natural lithium salts commonly used in treatments are composed of a mixture of these two stable isotopes (approximately 7.59% 6Li and 92.41% 7Li), some preliminary research indicates the above two stable isotopes of lithium may have differential effects on rat behaviour and neurophysiology. Here, we evaluate whether lithium isotopes may have distinct effects on HT22 neuronal cell viability, GSK-3-ß phosphorylation in HT22 cells, and GSK-3-ß kinase activity. We report no significant difference in lithium isotope toxicity on HT22 cells, nor in GSK-3-ß phosphorylation, nor in GSK-3-ß kinase activity between the two isotopes of lithium.

7.
RSC Adv ; 12(48): 31016-31023, 2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36349006

RESUMO

Direct glass-to-glass bonding is important for high-technology components in optics, microfluidics, and micro-electromechanical systems applications. We studied direct bonding of 1 mm thick soda-lime float glass substrates. The process is based on the classic RCA-1 cleaning procedure from the semiconductor industry modified with an ammonium hydroxide rinse, followed by a thermal treatment under unidirectional pressure without the need for a dedicated drying step. RCA-1 uses a solution of ammonium hydroxide and hydrogen peroxide to clean contaminants off the surface of silicon and enable subsequent bonding. Bond quality was evaluated using destructive shear testing. Strong bonds (≈7.81 MPa on average) were achieved using unidirectional pressure of approximately 0.88 MPa and bonding temperatures between 160 °C and 300 °C applied for 30 min. Surface roughness and chemistry was characterized before and after cleaning. The optical robustness of the bonds was tested and shown to be capable of surviving high powered continuous wave (CW) fiber laser irradiation of at least 375 W focused for 2 s without delamination. Melting of the substrate was observed at higher powers and longer exposure times.

8.
Biophys Chem ; 288: 106844, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35872467

RESUMO

Protein misfolding and aggregation are hallmarks of many diseases, including amyotrophic lateral sclerosis (ALS). In familial ALS, aberrant self-association of mutant Cu,Zn-superoxide dismutase (SOD1) is implicated as a key contributor to disease. Mutations have the largest impacts on the stability of the most immature form of SOD1, the unmetallated, disulfide-reduced monomer (apoSH SOD1). Here we demonstrate that, despite the marginal stability of apoSH SOD1, aggregation is little correlated with the degree of protein unfolding, and multiple modes of aggregation occur, depending on the mutation and solution conditions. Light scattering and atomic force microscopy reveal two distinct mutant SOD1 behaviours: high aggregator mutants form abundant small assemblies, while low aggregator mutants form fewer, more fibre-like aggregates. Attenuated total reflectance-Fourier transform infrared spectroscopy and Thioflavin T binding show the aggregates maintain native-like anti-parallel beta structure. These results provide new evidence that ALS-associated mutations promote the aggregation of apoSH SOD1 through multiple pathways, with broad implications for understanding mechanisms of protein self-association in disease and biotechnology.


Assuntos
Esclerose Amiotrófica Lateral , Esclerose Amiotrófica Lateral/genética , Dissulfetos/química , Humanos , Mutação , Dobramento de Proteína , Superóxido Dismutase/química , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo
9.
ACS Appl Mater Interfaces ; 14(3): 4119-4131, 2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35025196

RESUMO

Despite advances in the development of individual nanogenerators, the level of output energy generation must be increased to meet the demands of commercial electronic systems and to broaden their scope of application. To harvest low-frequency ambient mechanical energy more efficiently, we proposed a highly integrated hybridized piezoelectric-triboelectric-electromagnetic (tristate) nanogenerator in a uniaxial structure. In its highly integrated approach, a piezoelectric nanogenerator (PENG) based on CsPbBr3 (cesium lead bromide) nanoparticles (NPs) and poly(dimethylsiloxane) (PDMS) nanocomposite was fabricated on a triboelectrically negative nanostructured polyimide (PI) substrate. A cylindrical aluminum electrode grooved with permanent magnets was directed to move along a spring-less metallic guide bounded by these nanocomposites, thus essentially forming two single-electrode mode triboelectric nanogenerators (TENGs). By its optimized material design and novel integration approach of the PENGs, TENGs, and electromagnetic generators (EMGs), this uniaxial tristate hybrid nanogenerator (UTHNG) can synergistically produce an instantaneous electrical power of 49 mW at low-frequency ambient vibration (5 Hz). The UTHNG has excellent charging characteristics, ramping up the output voltage of a 22 µF capacitor to 2.7 V in only 12 s, which is much faster than individual nanogenerators. This work will be a superior solution for harvesting low-frequency ambient energies by improving the performance of hybrid nanogenerators, potentially curtailing the technology gap for self-powered micro/nanosystems for the Internet of Things.

10.
Biochim Biophys Acta Biomembr ; 1863(9): 183651, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34023300

RESUMO

We have studied the impact of cholesterol and/or melatonin on the static and dynamical properties of bilayers made of DPPC or DOPC utilizing neutron scattering techniques, Raman spectroscopy and molecular dynamics simulations. While differing in the amplitude of the effect due to cholesterol or melatonin when comparing their interactions with the two lipids, their addition ensued recognizable changes to both types of bilayers. As expected, based on the two-component systems of lipid/cholesterol or lipid/melatonin studied previously, we show the impact of cholesterol and melatonin being opposite and competitive in the case of three-component systems of lipid/cholesterol/melatonin. The effect of cholesterol appears to prevail over that of melatonin in the case of structural properties of DPPC-based bilayers, which can be explained by its interactions targeting primarily the saturated lipid chains. The dynamics of hydrocarbon chains represented by the ratio of trans/gauche conformers reveals the competitive effect of cholesterol and melatonin being somewhat more balanced. The additive yet opposing effects of cholesterol and melatonin have been observed also in the case of structural properties of DOPC-based bilayers. We report that cholesterol induced an increase in bilayer thickness, while melatonin induced a decrease in bilayer thickness in the three-component systems of DOPC/cholesterol/melatonin. Commensurately, by evaluating the projected area of DOPC, we demonstrate a lipid area decrease with an increasing concentration of cholesterol, and a lipid area increase with an increasing concentration of melatonin. The demonstrated condensing effect of cholesterol and the fluidizing effect of melatonin appear in an additive manner upon their mutual presence.


Assuntos
1,2-Dipalmitoilfosfatidilcolina/análogos & derivados , Colesterol/química , Melatonina/química , Fosfatidilcolinas/química , 1,2-Dipalmitoilfosfatidilcolina/química , Simulação de Dinâmica Molecular , Difração de Nêutrons , Espalhamento a Baixo Ângulo
11.
Sci Rep ; 11(1): 8744, 2021 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-33888826

RESUMO

The c subunit is an inner mitochondrial membrane (IMM) protein encoded by three nuclear genes. Best known as an integral part of the F0 complex of the ATP synthase, the c subunit is also present in other cytoplasmic compartments in ceroid lipofuscinoses. Under physiological conditions, this 75 residue-long peptide folds into an α-helical hairpin and forms oligomers spanning the lipid bilayer. In addition to its physiological role, the c subunit has been proposed as a key participant in stress-induced IMM permeabilization by the mechanism of calcium-induced permeability transition. However, the molecular mechanism of the c subunit participation in IMM permeabilization is not completely understood. Here we used fluorescence spectroscopy, atomic force microscopy and black lipid membrane methods to gain insights into the structural and functional properties of unmodified c subunit protein that might make it relevant to mitochondrial toxicity. We discovered that c subunit is an amyloidogenic peptide that can spontaneously fold into ß-sheets and self-assemble into fibrils and oligomers in a Ca2+-dependent manner. C subunit oligomers exhibited ion channel activity in lipid membranes. We propose that the toxic effects of c subunit might be linked to its amyloidogenic properties and are driven by mechanisms similar to those of neurodegenerative polypeptides such as Aß and α-synuclein.


Assuntos
Peptídeos beta-Amiloides/biossíntese , Canais de Cálcio/metabolismo , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Sequência de Aminoácidos , Dicroísmo Circular , Humanos , Microscopia de Força Atômica , Poro de Transição de Permeabilidade Mitocondrial , ATPases Mitocondriais Próton-Translocadoras/química , Conformação Proteica
12.
Int J Mol Sci ; 22(3)2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33494369

RESUMO

Neurodegeneration in Alzheimer's disease (AD) is defined by pathology featuring amyloid-ß (Aß) deposition in the brain. Aß monomers themselves are generally considered to be nontoxic, but misfold into ß-sheets and aggregate to form neurotoxic oligomers. One suggested strategy to treat AD is to prevent the formation of toxic oligomers. The SG inhibitors are a class of pseudopeptides designed and optimized using molecular dynamics (MD) simulations for affinity to Aß and experimentally validated for their ability to inhibit amyloid-amyloid binding using single molecule force spectroscopy (SMFS). In this work, we provide a review of our previous MD and SMFS studies of these inhibitors and present new cell viability studies that demonstrate their neuroprotective effects against Aß(1-42) oligomers using mouse hippocampal-derived HT22 cells. Two of the tested SG inhibitors, predicted to bind Aß in anti-parallel orientation, demonstrated neuroprotection against Aß(1-42). A third inhibitor, predicted to bind parallel to Aß, was not neuroprotective. Myristoylation of SG inhibitors, intended to enhance delivery across the blood-brain barrier (BBB), resulted in cytotoxicity. This is the first use of HT22 cells for the study of peptide aggregation inhibitors. Overall, this work will inform the future development of peptide aggregation inhibitors against Aß toxicity.


Assuntos
Amiloide/antagonistas & inibidores , Proteínas Amiloidogênicas/metabolismo , Peptídeos/química , Peptídeos/farmacologia , Agregados Proteicos/efeitos dos fármacos , Agregação Patológica de Proteínas/metabolismo , Sequência de Aminoácidos , Amiloide/química , Amiloide/metabolismo , Proteínas Amiloidogênicas/química , Linhagem Celular Tumoral , Sobrevivência Celular , Descoberta de Drogas , Humanos , Microscopia de Força Atômica , Modelos Moleculares , Conformação Molecular , Fármacos Neuroprotetores , Agregação Patológica de Proteínas/tratamento farmacológico , Ligação Proteica , Análise Espectral , Relação Estrutura-Atividade
13.
Soft Matter ; 17(4): 826-833, 2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33346309

RESUMO

In novel gene therapy mechanisms utilising gemini surfactants, electrostatic interactions of the surfactant molecules with the DNA strands is a primary mechanism by which the two components of the delivery vehicle bind. In this work, we show for the first time direct evidence of electrostatic interactions of these compounds visualised with Kelvin probe force microscopy (KPFM) and correlated to their topography from atomic force microscopy (AFM). We construct monolayers of lipids and gemini surfactant to simulate interactions on a cellular level, using lipids commonly found in cell membranes, and allow DNA to bind to the monolayer as it is formed on a Langmuir-Blodgett trough. The difference in topography and electrical surface potential between monolayers with and without DNA is striking. In fact, KPFM reveals a strongly positive relative electrical surface potential in between where we identify a background lipid and the DNA strands, evidenced by the height profiles of the domains. Such identification is not possible without KPFM. We conclude that it is likely we are seeing cationic surfactant molecules surrounding DNA strands within a sea of background lipid.


Assuntos
Terapia Genética , Tensoativos , DNA , Lipídeos , Microscopia de Força Atômica , Eletricidade Estática
14.
Biophys J ; 119(12): 2391-2402, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33157120

RESUMO

The structure and biophysical properties of lipid membranes are important for cellular functions in health and disease. In Alzheimer's disease, the neuronal membrane is a target for toxic amyloid-ß (Aß). Melatonin is an important pineal gland hormone that has been shown to protect against Aß toxicity in cellular and animal studies, but the molecular mechanism of this protection is not fully understood. Melatonin is a small membrane-active molecule that has been shown to interact with model lipid membranes and alter the membrane biophysical properties, such as membrane molecular order and dynamics. This effect of melatonin has been previously studied in simple model bilayers with one or two lipid components. To make it more relevant to neuronal membranes, we used a more complex ternary lipid mixture as our membrane model. In this study, we used 2H-NMR to investigate the effect of melatonin on the phase behavior of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), and cholesterol lipid membranes. We used deuterium-labeled POPC-d31 and DPPC-d62,separately to probe the changes in hydrocarbon chain order as a function of temperature and melatonin concentration. We find that POPC/DPPC/cholesterol at molar proportions of 3:3:2 is close to liquid-disordered/liquid-ordered phase separation and that melatonin can induce phase separation in these ternary mixtures by preferentially incorporating into the disordered phase and increasing its level of disorder. At 5 mol% melatonin, we observed phase separation in samples with POPC-d31, but not with DPPC-d62, whereas at 10 mol% melatonin, phase separation was observed in both samples with either POPC-d31 or DPPC-d62. These results indicate that melatonin can have a strong effect on membrane structure and physical properties, which may provide some clues to understanding how melatonin protects against Aß, and that choice of chain perdeuteration is an important consideration from a technical point of view.


Assuntos
Melatonina , Animais , Colesterol , Glicerilfosforilcolina , Bicamadas Lipídicas , Membranas , Fosfatidilcolinas , Fosforilcolina
15.
ACS Appl Mater Interfaces ; 12(42): 47503-47512, 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-32969216

RESUMO

In the modern era, structural health monitoring (SHM) is critically important and indispensable in the aerospace industry as an effective measure to enhance the safety and consistency of aircraft structures by deploying a reliable sensor network. The deployment of built-in sensor networks enables uninterrupted structural integrity monitoring of an aircraft, providing crucial information on operation condition, deformation, and potential damage to the structure. Sustainable and durable piezoelectric nanogenerators (PENGs) with good flexibility, high performance, and superior reliability are promising candidates for powering wireless sensor networks, particularly for aerospace SHM applications. This research demonstrates a self-powered wireless sensing system based on a porous polyvinylidene fluoride (PVDF)-based PENG, which is prominently anticipated for developing auto-operated sensor networks. Our reported porous PVDF film is made from a flexible piezoelectric polymer (PVDF) and inorganic zinc oxide (ZnO) nanoparticles. The fabricated porous PVDF-based PENG demonstrates ∼11 times and ∼8 times enhancement of output current and voltage, respectively, compared to a pure PVDF-based PENG. The porous PVDF-based PENG can produce a peak-to-peak short-circuit current of 22 µA, a peak-to-peak open-circuit voltage of 84.5 V, a peak output power of 0.46 mW (P=Voc2×Isc2), and a peak output power density of 41.02 µW/cm2 (P/A). By harnessing energy from minute vibrations, the fabricated porous PVDF-based PENG device (area of A = 11.33 cm2) can generate sufficient electrical energy to power up a customized wireless sensing and communication unit and transfer sensor data every ∼4 min. The PENG can generate sufficient electrical energy from an automobile car vibration, which reflects the scenario of potential real-life SHM systems. We anticipate that this high-performance porous PVDF-based PENG can act as a reliable power source for the sensor networks in aircraft, which minimizes potential safety risks.

16.
Transl Vis Sci Technol ; 9(7): 41, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32832246

RESUMO

Purpose: To describe the use of Kelvin probe force microscopy (KPFM) to investigate the electrical surface potential of human meibum and to demonstrate successful use of this instrument on both human meibum and a meibum model system (six-lipid stock [6LS]) to elucidate nanoscale surface chemistry and self-assembly characteristics. Materials and Methods: 6LS and meibum were analyzed in this study. Mica-supported thin films were created using the Langmuir-Blodgett trough. Topography and electrical surface potential were quantified using simultaneous atomic force microscopy/KPFM imaging. Results: Both lipid mixtures formed thin film patches on the surface of the mica substrate, with large aggregates resting atop. The 6LS had aggregate heights ranging from 41 to 153 nm. The range in surface potential was 33.0 to 125.9 mV. The meibum thin films at P = 5 mN/m had aggregates of 170 to 459 nm in height and surface potential ranging from 15.9 to 76.1 mV, while thin films at P = 10 mN/m showed an aggregate size range of 147 to 407 nm and a surface potential range of 11.5 to 255.1 mV. Conclusions: This study showed imaging of the differences in electrical surface potential of meibum via KPFM and showed similarities in nanoscale topography. 6LS was also successfully analyzed, showing the capabilities of this method for use in both in vitro and ex vivo ocular research. Translational Relevance: This study describes the use of KPFM for the study of ocular surface lipids for the first time and outlines possibilities for future studies to be carried out using this concept.


Assuntos
Glândulas Tarsais , Lágrimas , Face , Humanos , Lipídeos , Microscopia de Força Atômica
17.
Biochim Biophys Acta Biomembr ; 1862(9): 183363, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32450141

RESUMO

Melatonin is a neurohormone that has been shown to be protective in Alzheimer's diseases against amyloid-ß (Aß) toxicity, which involves interaction of Aß with neuronal membrane. Non-specific interactions of melatonin with cell membrane may play a physiological role in this process by preserving membrane fluidity. In the brain, melatonin is derived from the amino acid tryptophan through a pathway that includes serotonin and N-acetylserotonin (NAS). How these molecules affect the membrane properties is not understood. In this work, we studied interactions of melatonin and its metabolic precursors tryptophan, serotonin and NAS with dipalmitoylphosphatidylcholine (DPPC) monolayers at the air-water interface using Langmuir monolayer technique. Analysis of compression isotherms, phase transitions and compressibility moduli indicate that all four molecules alter the DPPC monolayer properties in a structure and concentration dependent manner. This effect was most pronounced for melatonin followed by NAS. Melatonin and NAS both decreased the compressibility modulus and shifted the LE/LC phase transition suggesting an increase in the membrane fluidity. Tryptophan and serotonin caused less pronounced effects on the DPPC isotherm. These differences suggest different interaction mechanisms and may be attributed to the interplay between electrostatic and hydrophobic interactions of these molecules with the zwitterionic DPPC headgroups which correlate with water solubility and oil partition coefficients (LogS and LogP) of each the four molecules. The results here demonstrate how the physiochemical properties of indoles can affect lipid membranes which may shed light on the functional significance of these important neurochemicals and the neuroprotective mechanisms of melatonin.


Assuntos
1,2-Dipalmitoilfosfatidilcolina/química , Melatonina/química , Fluidez de Membrana , Membranas Artificiais , Serotonina/química , Triptofano/química , 1,2-Dipalmitoilfosfatidilcolina/metabolismo , Doença de Alzheimer/metabolismo , Humanos , Melatonina/metabolismo , Serotonina/metabolismo , Triptofano/metabolismo
18.
Langmuir ; 35(37): 12236-12245, 2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31469572

RESUMO

Lipid bilayers are fundamental building blocks of cell membranes, which contain the machinery needed to perform a range of biological functions, including cell-cell recognition, signal transduction, receptor trafficking, viral budding, and cell fusion. Importantly, many of these functions are thought to take place in the laterally phase-separated regions of the membrane, commonly known as lipid rafts. Here, we provide experimental evidence for the "stabilizing" effect of melatonin, a naturally occurring hormone produced by the brain's pineal gland, on phase-separated model membranes mimicking the outer leaflet of plasma membranes. Specifically, we show that melatonin stabilizes the liquid-ordered/liquid-disordered phase coexistence over an extended range of temperatures. The melatonin-mediated stabilization effect is observed in both nanometer- and micrometer-sized liposomes using small angle neutron scattering (SANS), confocal fluorescence microscopy, and differential scanning calorimetry. To experimentally detect nanoscopic domains in 50 nm diameter phospholipid vesicles, we developed a model using the Landau-Brazovskii approach that may serve as a platform for detecting the existence of nanoscopic lateral heterogeneities in soft matter and biological materials with spherical and planar geometries.


Assuntos
Bicamadas Lipídicas/química , Melatonina/química , Fosfolipídeos/química
19.
Molecules ; 23(12)2018 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-30486385

RESUMO

Healthcare has advanced significantly, bringing with it longer life expectancies and a growing population of elders who suffer from dementia, specifically Alzheimer's disease (AD). The amyloid beta (Aß) peptide has been implicated in the cause of AD, where the peptides undergo a conformational change and form neurotoxic amyloid oligomers which cause neuronal cell death. While AD has no cure, preventative measures are being designed to either slow down or stop the progression of this neurodegenerative disease. One of these measures involves dietary supplements with polyunsaturated fatty acids such as docosahexaenoic acid (DHA). This omega-3 fatty acid is a key component of brain development and has been suggested to reduce the progression of cognitive decline. However, different studies have yielded different results as to whether DHA has positive, negative, or no effects on Aß fibril formation. We believe that these discrepancies can be explained with varying concentrations of DHA. Here, we test the inhibitory effect of different concentrations of DHA on amyloid fibril formation using atomic force microscopy. Our results show that DHA has a strong inhibitory effect on Aß1⁻42 fibril formation at lower concentrations (50% reduction in fibril length) than higher concentrations above its critical micelle concentration (70% increase in fibril length and three times the length of those at lower concentrations). We provide evidence that various concentrations of DHA can play a role in the inhibitory effects of amyloid fibril formation in vitro and help explain the discrepancies observed in previous studies.


Assuntos
Peptídeos beta-Amiloides/química , Amiloide/química , Ácidos Docosa-Hexaenoicos/química , Microscopia de Força Atômica , Fragmentos de Peptídeos/química , Agregados Proteicos , Amiloide/ultraestrutura , Ácidos Docosa-Hexaenoicos/farmacologia , Relação Dose-Resposta a Droga , Humanos
20.
Curr Alzheimer Res ; 15(7): 618-627, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29332578

RESUMO

BACKGROUND: PDGFß receptors and their ligand, PDGF-BB, are upregulated in vivo after neuronal insults such as ischemia. When applied exogenously, PDGF-BB is neuroprotective against excitotoxicity and HIV proteins. OBJECTIVE: Given this growth factor's neuroprotective ability, we sought to determine if PDGF-BB would be neuroprotective against amyloid-ß (1-42), one of the pathological agents associated with Alzheimer's disease (AD). METHODS AND RESULTS: In both primary hippocampal neurons and the human-derived neuroblastoma cell line, SH-SY5Y, amyloid-ß treatment for 24 h decreased surviving cell number in a concentrationdependent manner. Pretreatment with PDGF-BB failed to provide any neuroprotection against amyloid-ß in primary neurons and only very limited protective effects in SH-SY5Y cells. In addition to its neuroprotective action, PDGF promotes cell growth and division in several systems, and the application of PDGFBB alone to serum-starved SH-SY5Y cells resulted in an increase in cell number. Amyloid-ß attenuated the mitogenic effects of PDGF-BB, inhibited PDGF-BB-induced PDGFß receptor phosphorylation, and attenuated the ability of PDGF-BB to protect neurons against NMDA-induced excitotoxicity. Despite the ability of amyloid-ß to inhibit PDGFß receptor activation, immunoprecipitation experiments failed to detect a physical interaction between amyloid-ß and PDGF-BB or the PDGFß receptor. However, G protein-coupled receptor transactivation of the PDGFß receptor (an exclusively intracellular signaling pathway) remained unaffected by the presence of amyloid-ß. CONCLUSIONS: As the PDGF system is upregulated upon neuronal damage, the ability of amyloid-ß to inhibit this endogenous neuroprotective system should be further investigated in the context of AD pathophysiology.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Becaplermina/farmacologia , Hipocampo/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Fragmentos de Peptídeos/metabolismo , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Hipocampo/metabolismo , Humanos , Camundongos , Neurônios/metabolismo , Neuroproteção/efeitos dos fármacos , Neuroproteção/fisiologia , Fosforilação/efeitos dos fármacos , Cultura Primária de Células , Serotonina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA